BHAGWANT UNIVERSITY Sikar Road, Ajmer Rajasthan

Syllabus

Institute of Applied Sciences & Life Sciences

M. Phil I Semester

Statistics

Course Category

MSta: M.Phil in Statistics

CCC: Compulsory Core Course

ECC: Elective Core Course

Contact Hours:

L: Lecture T: Tutorial

P: Practical or Other

<u>Marks Distribution:</u>

IA: Internal Assessment (Test/Classroom

Participation/Quiz/Presentation/Assignment etc.)

EoSE: End of Semester Examination

M. Phil (Statistics)

(Course Structure)

Subject code	Subject Name	Teaching hours			Marks		
		L	Т	P	External	Internal	Total
01MSta101	Research Methods	3	0	0	70	30	100
01MSta102	ADVANCED STATISTICAL INFERENCE	3	0	0	70	30	100
01MSta103	ADVANCED APPLIED MULTIVARIATE ANALYSIS	3	0	0	70	30	100
01MSta104	Paper-IV: MARKOV CHAINS AND TIME SERIES Reforms	3	0	0	100		100

Total	12	0	0	280	120	400

Paper I: RESEARCH METHODOLOGY

Paper code 01MSta101

Unit 1 Matrices

Introduction to Linear models – Quadratic forms in random variables - Canonical reduction – generalized inverse and it properties– Moore Penrose inverse.

Unit 2 Probability Theory:

Convergence in sequence - Almost uniform convergence - Convergence in probability - Convergence in Measure - Convergence in Mean.

Law of large numbers: Weak and Strong Law of large numbers – various forms of Central limit theorems: Lindeberg – Liapounov and Lindeberg – Feller CLT.

Unit 3 Sampling Theory

Ratio and Regression methods of estimators – Bias of these estimators – Two stage sampling - Probability proportion sampling methods (PPS).

Unit 4 Data Analysis

Types of Data: Qualitative and Quantitative data: Cross sectional and time series data: Different types of scales nominal, ordinal, ratio and interval.

Basics of Statistical methods such as regression, principal component analysis, Discriminant analysis, cluster analysis (no derivations – applications understanding of procedures, concepts interpretation and assumptions) – Implementation of about techniques through statistical packages – Interpretation of computer outputs.

Unit 5 Research Methodology

Definition of Research – Stages in Research – Types of research – Research design and planning ,Thesis writing.

Writing a project proposal to a funding agency.

Books for Study:

- 1. Pauline V Young Research Methodology
- 2. Burrill C. W Measure theory and Probability, McGraw Hill, New York.
- 3. Billingsley: Probability and Measure, Wiley Interscience, 1984.
- 4. Rao, C.R.: Linear statistical inference and its applications, John Wiley & sons, 1983.
- 5. Biswas S: Topics in Algebra of Matrices, Academic Publication, 1984.
- 6. Bhat B.R.: Modern probability theory 3rd ed., New Age International, 1999.
- 7. Graybill, F.A.: An Introduction in to Linear Models, McGraw Hill, New York, 1961.
- 8. Rohatgi & Saleh (2002) Introduction to probability and statistics Asia Publications
- 9. Ash R.B: Real Analysis and Probability Academic press, New York, 1972.
- 10. Sukhatme, P.V., Sukhatme, B.V. and others: Sampling theory of Surveys with applications, 3rd ed, ISAS Publication, 1997.
- 11. Johnson & Applied Multivariate Techniques.

Paper II: ADVANCED STATISTICAL INFERENCE

Paper code 01MSta102

Unit I

Sufficient statistics – existence and construction of Minimal sufficient statistics – sufficiency

and completeness – sufficiency and invariance – Minimum variance unbiased estimation –

Unbiased estimation of location and scale parameters.

Unit II

Maximum likelihood estimators - properties - Strong consistency - asymptotic efficiency of

maximum likelihood estimators – best asymptotically normal estimators – Inference based on

Censored data (concept only).

Unit III

Neymann – Pearson fundamental lemma – distributions with monotone likelihood ratio

confidence bounds, UMP tests for the two sided hypothesis – tests for parameters in a

normal distribution.

Unit IV

Unbiased tests: Concept of unbiasedness – application to one parameter exponential family

- similarly and completeness - UMP unbiased tests for multi parameter exponential families

- comparison of two Poisson and Binomial population - Application of unbiasedness.

Unit V

Invariant tests: Symmetry and invariance - maximal invariance - most powerful invariant

tests – unbiasedness and invariance.

Reference:

- 1. Lehman E.L. and Casella: Theory of Point Estimation, Springer Verlag, 1988.
- 2. Lehman E.L.: Testing Statistical Hypothesis, John Wiley & Sons, 1986.
- 3. Rohatgi V.K.: Introduction to mathematical Statistics, Wiley Eastern, 1984.
- 4. Zacks S.: Theory of Statistical Inference, John Wiley & Sons, 1991
- 5. Ferguson T.S.: Mathematical Statistics A decision theoretic approach, Academic Press, 1967.
- 6. Kale B.k: A first course on parametric inference, Narosa Publication, New Delhi, 1999.

Paper III: ADVANCED APPLIED MULTIVARIATE ANALYSIS

Paper code 01MSta103

Unit I

Introduction to Multivariate analysis – Data Reduction – Principle component analysis – Determination of number of principle components to be retained – component scores.

Unit II

Introduction to Factor analysis – Communalities – Comparison of Extraction procedures – Rotation of factors – Factor scores – Introduction to Multidimensional scaling – Proximities and data collection – Relationship with other data reduction procedures.

Unit III

Introduction to Cluster analysis – Similarity measures – Clustering techniques – Hierarchical and partitioning methods – Graphical methods – Peudograms – guidelines.

Unit IV

Introduction to canonical correlation analysis – Interpretation of canonical correlation results

- Issues in interpretation.

Introduction to Discriminant analysis – Two group problem – variable contribution – Violation

of assumptions Logistic discrimination – error rate estimation.

Unit V

Linear structural Relations (LISREL) - Path analysis - Testing casual model - Evaluating

LISREL solutions.

Latent Structural analysis - Logic behind Latent structure analysis - Latent class models -

Restricted Latent class models.

Books for study:

1. Dillon, W.R. and Goldstein, M.: Multivariate Analysis Methods and Applications, John

Wiley & Sons 1984.

2. Hair J.F., Junior Anderson R. E and Tatham R.L, Multivariate Data Analysis with

Readings, MacMillan Publications, New York, 1987.

Paper-IV: MARKOV CHAINS AND TIME SERIES

Paper code 01MSta104

Unit 1

Introduction of Stochastic Process: Definition – Examples - Classification of Stochastic

process awarding to state space, index set and dependence among the random variablessome

common stochastic processes (Bernoulli, Poisson Gaussion and wiener - concept

only). Marko chain (MC): Chapman kolmogorov's equation - classification of states. A

canonical representation of the transition probability matrix. Classification of the states using

graph algorithms - Morkov chains as graphs - Martingales - Limiting Probabilities.

Unit 2

Finite Markov chains with recurrent and transient states - irreducible finite Markov chains with ergodic states - First passage times and occupation times - Two states MC (idea only).

Reversed Makov chains - Limit theorems (No proof) - Application only.

Unit 3

Markov Processes (MP) – Detailed Study of Poisson process, Pure Birth process, Yule's process, Birth and death process-Application to queues.

Unit 4

Stochastic models for Time Series - General linear filter model-Autoregressive (AR(p)) models - Moving average model (MA(q)) - Autoregressive - Moving average (ARMA(p,q)) models - Autoregressive integrated moving average model (ARIMA(p,d,q)).

Unit 5

Analysing Time Series Model: Spectral Density of AR models, MA, ARMA, models.

Relationship between Auto covariance and spectral density - Cyclical Behaviour finding Auto covariance, Auto correlation through Spectral Density. Analysing Spectral Graph-Analysing the Cyclic Behaviour of Time Series - Spectral Density and Linear Filters. Relationship between Markov Process and Time Series - Co integrated Time Series.

Books for study:

- 1. Bhat. U.N: Elements of Applied Stochastic Processes, Wiley 1972.
- Karlin.S and Taylor: A first course in Stochastic Processes, Academic Press, New York.
 1975.
- 3. Methi.J: Stochastic Processes, Wiley Eastern, 2nd ed, 1994.